

Dehydrogenation versus Oxygenation in Two-Electron and Four-Electron Reduction of Dioxygen by 9-Alkyl-10-methyl-9,10-dihydroacridines Catalyzed by Monomeric Cobalt Porphyrins and Cofacial Dicobalt Porphyrins in the Presence of Perchloric Acid

Shunichi Fukuzumi,*,† Ken Okamoto,† Yoshihiro Tokuda,† Claude P. Gros,‡ and Roger Guilard*,‡

Contribution from the Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan, and LIMSAG, UMR 5633, Faculté des Sciences Gabriel, Université de Bourgogne, 6, bd Gabriel, 21100 Dijon, France

Received June 17, 2004; E-mail: fukuzumi@ap.chem.eng.osaka-u.ac.jp; roger.guilard@u-bourgogne.fr.

Abstract: Dehydrogenation of 10-methyl-9,10-dihydroacridine (AcrH₂) by dioxygen (O₂) proceeds efficiently, accompanied by the two-electron and four-electron reduction of O_2 to produce H_2O_2 and H_2O , which are effectively catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins in the presence of perchloric acid (HClO₄) in acetonitrile (MeCN) and benzonitrile (PhCN), respectively. The cobalt porphyrin catalyzed two-electron reduction of O2 also occurs efficiently by 9-alkyl-10-methyl-9,10-dihydroacridines (AcrHR; R = Me, Et, and CH₂COOEt) to yield 9-alkyl-10-methylacridinium ion (AcrR⁺) and H₂O₂. In the case of $R = Bu^t$ and CMe₂COOMe, however, the catalytic two-electron and four-electron reduction of O₂ by AcrHR results in oxygenation of the alkyl group of AcrHR rather than dehydrogenation to yield 10methylacridinium ion (AcrH⁺) and the oxygenated products of the alkyl groups, i.e., the corresponding hydroperoxides (ROOH) and the alcohol (ROH), respectively. The catalytic mechanisms of the dehydrogenation vs the oxygenation of AcrHR in the two-electron and four-electron reduction of O2, catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins, respectively, are discussed in relation to the C(9)-H or C(9)-C bond cleavage of AcrHR radical cations produced in the electron-transfer oxidation of AcrHR.

Introduction

Most organic compounds that have singlet ground states are unreactive toward dioxygen, which has a triplet ground state, because the reactions of triplet dioxygen $({}^{3}O_{2})$ with singlet molecules to produce singlet products are spin-forbidden.¹ In contrast, electron transfer from organic donors to O₂ to produce the radical cations of organic donors and the radical anion of O_2 ($O_2^{\bullet-}$) is spin-allowed.² In the respiratory chain, reduced nicotinamide adenine dinucleotide (NADH) acts as the electron source for the four-electron reduction of O₂ to H₂O via stepwise electron transport, coupled to membrane-spanning proton transport for ATP synthesis.³⁻⁶ NADH itself is stable against O₂, and thus, either dioxygen or NADH should be activated to

- Bonnett, R. Essays Biochem. 1981, 17, 1.
 Chanon, M.; Julliard, M.; Santamaria, J.; Chanon, F. New J. Chem. 1992, 16, 171.
- (3) (a) Mitchell, P. Science 1979, 206, 1148. (b) Michel, H.; Behr, J.; Harrenga, A.; Kannt, A. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 329.
- (4) (a) Babcock, G. T.; Wikström, M. Nature 1992, 356, 301. (b) Babcock, G. T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12971.
- (5) (a) Wikström, M.; Krab, K.; Saraste M. In Cytochrome Oxidase: A Synthesis; Academic Press: London, 1981. (b) Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. **1996**, 96, 2889.

undergo the reduction of O₂ by NADH.⁷ In the former case, activated dioxygen species such as singlet oxygen can oxidize NADH to yield the two-electron oxidized form, i.e., NAD⁺.8-11 Photoinduced electron transfer from the singlet excited states of NADH analogues to O2 also leads to the two-electron reduction of O₂.¹² In the presence of acids, the thermal electrontransfer reduction of O₂ becomes energetically much more

- (7) (a) Fukuzumi, S. In Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, Chapter 10. (b) Fukuzumi, S. In Advances in Electron Transfer Chemistry; Mariano, P. S., Ed.; JAI (a) Bodaness, R. S.; Chan, P. C. J. Biol. Chem. 1977, 252, 8554. (b) Land,

- (a) Bodicss, R. S., Chai, T. C. J. Biol. Chem. D77, 252, 0534. (b) Earld, E. J.; Swallow, A. J. Biochim. Biophys. Acta 1971, 234, 34.
 (9) Czochralska, B.; Kawczynski, W.; Bartosz, G.; Shugar, D. Biochim. Biophys. Acta 1984, 801, 403.
 (10) Fukuzumi, S.; Fujita, S.; Suenobu, T.; Imahori, H.; Araki, Y.; Ito, O. J. Phys. Chem. A 2002, 106, 1465.
- (11) For photosensitized one-electron reduction of O₂ by NADH, see: (a) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. *J. Am. Chem. Soc.* **2003**, *125*, 12803. (b) Nakanishi, I.; Fukuzumi, S.; Konishi, T.; Ohkubo, K.; Fujitsuka, M.; Ito, O.; Miyata, N. *J. Phys. Chem. B* **2002**, *106*, 2372.

[†]Osaka University

[‡] Université de Bourgogne.

^{(6) (}a) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Science **1995**, *269*, 1069. (b) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. *Science* **1996**, *272*, 1136. (c) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. Science 1998, 280, 1723.

favorable than that in the absence of acids.¹³ Thus, the thermal reduction of O₂ is made possible by an acid-stable NADH analogue, i.e., 10-methyl-9,10-dihydroacridine $(AcrH_2)^{14-16}$ in the presence of perchloric acid (HClO₄) in acetonitrile (MeCN) to yield H₂O₂ and the corresponding NAD⁺ analogue, 10methylacridinium ion (AcrH⁺).¹⁷ The thermal two-electron reduction of O₂ by AcrH₂ has been reported to be catalyzed efficiently by metalloporphyrins such as $Co(TPP)^+$ (TPP²⁻ = tetraphenylporphyrin dianion) in the presence of HClO₄ in MeCN.^{18,19} In the respiratory chain, NADH is used as the electron source in the terminal enzymes of the respiratory chains, i.e., cytochrome c oxidases (CcO's), which consist of the bimetallic Fe/Cu core located in the inner mitochondrial membrane and catalyze the four-electron reduction of O2 to H2O by the soluble one-electron carrier, cytochrome c, without formation of H₂O₂.³⁻⁶ In this context, we have recently reported four-electron reduction of O₂ by one-electron reductants such as ferrocene derivatives, which is efficiently catalyzed by cofacial dicobalt porphyrins in the presence of perchloric acid (HClO₄) in benzonitrile (PhCN).²⁰ A number of synthetic models of CcO's have so far been synthesized to mimic the coordination environment of the Fe/Cu core as well as the catalytic function of the four-electron reduction of O2.21-24 Electrocatalytic fourelectron reduction has so far been studied extensively because not only it is of great biological interest, but also it is of technological significance such as in fuel cells.²⁵⁻²⁸ However,

- (12) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin Trans. 2 1989, 1037.
- (13) (a) Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393. (b) Chin, D.-H.; Chiericato, G., Jr.; Nanni, E. J., Jr.; Sawyer, D. T. J. Am. Chem. Soc. 1982, 104, 1296. (c) Lee-Ruff, E. Chem. Soc. Rev. 1977, 6, 195
- (14) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305.
- (15) (a) Pestovsky, O.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1998, 37, 1616. (b) Pestovsky, O.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1998, 120. 13422
- (16) NADH and the ordinary model compounds decompose in the presence of acids. (a) Johnston, C. C.; Gardner, J. L.; Suelter, C. H.; Metzler, D. E. Biochemistry 1963, 2, 689. (b) Kim C. S. Y.; Chaykin, S. Biochemistry 1968, 7, 2339. (c) van Eikeren, P.; Grier, D. L.; Eliason, J. J. Am. Chem. Soc. 1979, 101, 7406.
- (17) Fukuzumi, S.; Chiba, M.; Ishikawa, M.; Ishikawa, K.; Tanaka, T. J. Chem. Soc., Perkin Trans. 2 1989, 1417. (a) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Chem. Soc., Chem. Commun.
- (18)1989, 391. (b) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Inorg. Chem. 1990, 29. 653.
- (19) For the catalytic two-electron reduction of other NADH analogues by O2, (1) For the eataryte two-electron reduction of other (ADT analogus by O₂, see: (a) Vol'pin, M. E.; Novodarova, G. N.; Kolosova, E. M.; Guzhova, N. V.; Kononenko, A. A.; Lejkin, Y. N. *Inorg. Chim. Acta* **1981**, *50*, 21. (b) Tabushi, I.; Kodera, M. *J. Am. Chem. Soc.* **1986**, *108*, 1101.
 (20) Fukuzumi, S.; Okamoto, K.; Gros, C. P.; Guilard, R. *J. Am. Chem. Soc.*
- 2004, 126, 10441.
- (21)Collman, J. P.; Boulatov, R.; Sunderland, C. J. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Elsevier Science: New
- (22) (a) Collman, J. P.; Fu, L.; Herrmann, P. C.; Zhang, X. M. Science 1997, 275, 949. (b) Collman, J. P. *Inorg. Chem.* 1997, 36, 5145. (c) Collman, J. P.; Fu, L.; Herrmann, P. C.; Wang, Z.; Rapta, M.; Bröring, M.; Schwenninger, R.; Boitrel, B. *Angew. Chem., Int. Ed.* 1998, 37, 3397. (d) Boulatov, D. C.; Wang, T. M. S. M. S. Chem., Distribution of the second s R.; Collman, J. P.; Shiryaeva, I. M.; Sunderland, C. J. J. Am. Chem. Soc. 2002, 124, 11923.
- (23) (a) Liang, H. C.; Dahan, M.; Karlin, K. D. *Curr. Opin. Chem. Biol.* 1999, 3, 168. (b) Ghiladi, R. A.; Ju, T. D.; Lee, D.-H.; Moënne-Loccoz, P.; Kaderli, S.; Neuhold, Y.-M.; Zuberbühler, A. D.; Woods, A. S.; Cotter, R. J.; Karlin, K. D. J. Am. Chem. Soc. 1999, 121, 9885. (c) Ghiladi, R. A.;
- J.; Karlin, K. D. J. Am. Chem. Soc. 1999, 121, 9885. (c) Ghiladi, K. A.; Hatwell, K. R.; Karlin, K. D.; Huang, H.-w.; Moënne-Loccoz, P.; Krebs, C.; Huynh, B. H.; Marzilli, L. A.; Cotter, R. J.; Kaderli, S.; Zuberbühler, A. D. J. Am. Chem. Soc. 2001, 123, 6183.
 (24) (a) Sasaki, T.; Naruta, Y. Chem. Lett. 1995, 24, 663. (b) Sasaki, T.; Nakamura, N.; Naruta, Y. Chem. Lett. 1998, 27, 351. (c) Chishiro, T.; Shimazaki, Y.; Tani, F.; Tachi, Y.; Naruta, Y.; Karasawa, S.; Hayami, S.; Maada, Y. Awaew, Chem. Lett. 2003, 42, 2788 Maeda, Y. Angew. Chem., Int. Ed. 2003, 42, 2788.
- (25) (a) Collman, J. P.; Rapta, M.; Bröring, M.; Raptova, L.; Schwenninger, R.; Boitrel, B.; Fu, L.; L'Her, M. J. Am. Chem. Soc. **1999**, *121*, 1387. (b) Collman, J. P.; Boulatov, R. Angew. Chem., Int. Ed. **2002**, *41*, 3487.

the catalytic four-electron reduction of O₂ by an NADH analogue without formation of H_2O_2 has yet to be achieved.

We report herein that the four-electron reduction of O_2 by an acid-stable NADH analogue (AcrH₂) occurs efficiently using cofacial dicobalt porphyrins as effective catalysts in the presence of HClO₄ in benzonitrile (PhCN), as shown in Scheme 1, but only the two-electron reduction of O2 by AcrH2 takes place using monomeric cobalt porphyrins under otherwise identical experimental conditions. When AcrH2 is replaced by 9-alkyl-10methyl-9,10-dihydroacridine (AcrHR),29,30 the monomeric cobalt porphyrins catalyze two-electron reduction of O₂ by AcrHR in the presence of HClO₄, resulting in oxygenation of the alkyl group via the C(9)-C bond cleavage of AcrHR to yield AcrH⁺ and the dioxygenated product, i.e., alkyl hydroperoxide (ROOH), instead of dehydration of AcrHR via the C(9)-H cleavage to yield H₂O₂ depending on the type of R group. Similar selectivity in the dehydration vs oxygenation of AcrHR by O₂ is observed for the cofacial dicobalt porphyrin catalyzed four-electron reduction of O₂ by AcrHR, in which the dehydration of AcrHR yields H₂O and AcrR⁺ whereas the oxygenation yields ROH and AcrH⁺ (Scheme 1). The selectivities of the C-H vs C-C bond cleavage as well as the reactivities of AcrHR in the monomeric and dimeric cobalt porphyrin catalyzed reduction of O₂ are compared to those in the electron-transfer oxidation of AcrHR with one-electron oxidants.²⁹ Such comparison provides valuable insight into the catalytic mechanism of the dehydration vs oxygenation pathways in the monomeric and dimeric cobalt porphyrin-catalyzed two-electron and fourelectron reductions of O₂ by AcrHR.

Experimental Section

Materials. Cobalt(II) tetraphenylporphyrin [Co(TPP)] was prepared according to the literature.³¹ Co(TPP) was oxidized by O₂ in the presence of HCl in methanol to obtain Co(TPP)Cl,32 which was purified by recrystallization from methanol. Co(TPP)ClO₄ was obtained by the

- (29)Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto, T.; Otera, J. J. Am. Chem.
- Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem. Soc. **2000**, *122*, 4286. (30)

^{(26) (}a) Anson, F. C.; Shi, C.; Steiger, B. Acc. Chem. Res. 1997, 30, 437. (b) (26) (a) Anson, F. C.; Shi, C.; Steiger, B. Acc. Chem. Res. 1997, 30, 437. (b) Liu, Z.; Anson, F. C. Inorg. Chem. 2001, 40, 1329. (c) Liu, Z.; Anson, F. C. Inorg. Chem. 2000, 39, 274. (d) Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.
(27) (a) Kingsborough, R. P.; Swager, T. M. Chem. Mater. 2000, 12, 872. (b) Kingsborough, R. P.; Swager, T. M. Adv. Mater. 1998, 10, 1100.
(28) Vijayalatha, S.; Gomathi, H.; Prabhakara, R. Bull. Electrochem. 1992, 8, 2005.

metathesis of the corresponding chloride salt with AgClO4 and recrystallized from toluene.33 Cobalt(II) octaethylporphyrin [Co(OEP)] was purchased by Aldrich Co., USA. Details of the synthesis and characterization of each cofacial dicobalt porphyrin [Co2(DPB), Co2-(DPA), Co₂(DPX), and Co₂(DPD)] have been reported elsewhere.^{34–37} Acetonitrile (MeCN) and benzonitrile (PhCN) were purchased from Tokyo Kasei Organic Chemicals, Japan, and distilled over P2O5 prior to use.³⁸ Perchloric acid (70%) and hydrogen peroxide were obtained from Wako Pure Chemicals. 10-Methyl-9,10-dihydroacridine (AcrH₂) was prepared from 10-methylacridinium iodide (AcrH⁺I⁻) by reduction with NaBH₄ in methanol, and purified by recrystallization from ethanol.³⁹ 10-Methylacridinium iodide was prepared by the reaction of acridine with methyl iodide in acetone, and it was converted to the perchlorate salt (AcrH⁺ClO₄⁻) by the addition of magnesium perchlorate to the iodide salt and purified by recrystallization from methanol.14 9-Alkyl-10-methyl-9,10-dihydroacridines (AcrHR; R = Me, Et, CH₂-Ph) were prepared by the reduction of AcrH⁺I⁻ with the corresponding Grignard reagents (RMgX).²⁹ AcrHR (R = Bu') was prepared by the photoreduction of AcrH⁺ClO₄⁻ with RCOOH in the presence of NaOH in $H_2O-MeCN$ ⁴⁰ AcrHR's (R = CH₂COOEt and CMe₂COOMe) were prepared by the reduction of AcrH⁺ClO₄⁻ with the corresponding ketene silvl acetals (CH2=C(OEt)OSiEt3 and Me2C=C(OMe)OSiMe3, respectively).⁴¹ 9-Substituted 10-methylacridinium perchlorate (AcrR⁺ClO₄⁻; R = Me, Et, Bu') was prepared by the reaction of 10-methylacridone in dichloromethane with RMgX and purified by recrystallization from ethanol-diethyl ether.29

Reaction Procedure. Typically, an O2-saturated acetonitrile or chloroform (CD₃CN or CDCl₃, 0.7 mL) solution containing HClO₄ (5.0 \times 10^{-2} M) was added to an NMR tube which contained AcrHR (5.6 \times 10⁻³ mmol) and a catalyst (7.0 \times 10⁻⁵ mmol). The oxidized products were identified by comparing the ¹H NMR spectra of the resulting solution with those of the authentic samples, which were obtained independently. ¹H NMR (CD₃CN): AcrH⁺ClO₄⁻ δ 4.76 (s, 3H), 7.9-8.8 (m, 8H); AcrMe⁺ClO₄⁻ δ 3.48 (s, 3H), 4.74 (s, 3H), 7.9–8.9 (m, 8H); AcrEt⁺ClO₄⁻ δ 1.52 (t, 3H), 3.95 (q, 2H), 4.71 (s, 3H), 7.9-8.9 (m, 8H); AcrCH₂Ph⁺ClO₄⁻ δ [4.79 (s, 3H), 5.35 (s, 2H), 7.5–8.6 (m, 13H)]; AcrCH₂COOEt⁺ClO₄⁻ δ 1.09 (t, 3H), 2.41 (q, 2H), 4.76 (s, 3H), 5.02 (s, 2H), 7.7–8.7 (m, 8H); Bu'OOH δ 1.18 (s, 9H); Bu'OH δ 1.16 (s, 9H); HOOCMe₂COOMe δ 1.37 (s, 6H), 3.70 (s, 3H). The ¹H NMR measurements were performed using Japan Electron Optics JEOL JNM-AL300 (300 MHz) and JNM-GSX-400 (400 MHz) NMR spectrometers. The amount of hydrogen peroxide (H₂O₂) was determined by titration by iodide ion.42 The aliquots of the product mixture in MeCN or PhCN were treated with excess NaI, and the amount of I_3^- formed was determined by the UV-visible spectrum ($\lambda_{max} = 365$ nm, $\epsilon_{\text{max}} = 28\ 000\ \text{M}^{-1}\ \text{cm}^{-1})^{42}$ using a Hewlett-Packard 8453 diode array spectrophotometer with a quartz cuvette (path length = 10 mm) at 298 K. Electronic absorption spectra during the cobalt porphyrincatalyzed oxidation of AcrHR by O2 in the presence of HClO4 in MeCN or PhCN were recorded on a Shimadzu UV-2200 or UV-3100PC spectrophotometer with a quartz cell (1 mm or 1 cm i.d.), which was

- (31) Aldler, A. D.; Longo, F. R.; Varadi, V. Inorg. Synth. 1976, 16, 213. Sakurai, T.; Yamamoto, K.; Naito, H.; Nakamoto, N. Bull. Chem. Soc. (32)
- Jpn. 1976, 49, 3042. (33)Reed, C. A.; Mashiko, T.; Bentley, S. P.; Kastner, M. E.; Scheidt, W. R.;
- Spartalian, K.; Lang, G. J. Am. Chem. Soc. 1979, 101, 2948. (34)Collman, J. P.; Hutchison, J. E.; Lopez, M. A.; Tabard, A.; Guilard, R.;
- Seok, W. K.; Ibers, J. A.; L'Her, M. J. Am. Chem. Soc. 1992, 114, 9869.
 Deng, Y.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2000, 122, 410.
- (36) Guilard, R.; Lopez, M. A.; Tabard, A.; Richard, P.; Lecomte, C.; Brandès,
- S.; Hutchison, J. E.; Collman, J. P. J. Am. Chem. Soc. 1992, 114, 9877. (37) Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera, D. G. Inorg.
- Chem. 2000, 39, 959. (38) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 4th ed.; Pergamon Press: Elmsford, NY, 1996.
- (39) Roberts, R. M. G.; Ostovic, D.; Kreevoy, M. M. Faraday Discuss. Chem. Soc. 1982, 74, 257.
- (40) Fukuzumi, S.; Kitano, T.; Tanaka, T. *Chem. Lett.* **1989**, *18*, 1231.
 (41) Otera, J.; Wakahara, Y.; Kamei, H.; Sato, T.; Nozaki, H.; Fukuzumi, S. (41) Tetrahedron Lett. **1991**, 32, 2405.
- (42) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020.

Figure 1. Spectral change observed in the oxidation of $AcrH_2$ (1.2 × 10⁻⁴ M) with O₂ (8.5 × 10⁻³ M), catalyzed by Co(OEP) (2.0 × 10⁻⁵ M) in the presence of HClO₄ (3.0 \times 10⁻² M) in PhCN.

placed in a thermostated compartment at 298 K. An air-saturated PhCN solution was used for the catalytic reduction of O₂ by AcrHR. The O₂ concentrations in an air-saturated PhCN solution (1.7 \times 10⁻³ M) and an air-saturated MeCN solution (2.6 \times 10⁻³ M) were determined by spectroscopic titration for the photooxidation of AcrH2 by O2 as reported previously.^{12,20} Larger concentrations of AcrHR than those of O₂ were used for the catalytic reduction of O₂ by AcrHR, when dioxygen was the limiting reagent in the reaction cell which was filled with the reactant solution.

Kinetic Measurements. All kinetic measurements were performed on a Shimadzu UV-2200 or UV-3100PC spectrophotometer at 298 K. Rates of the oxidation of AcrHR were monitored by the rise of the absorption band due to AcrH⁺ and AcrR⁺ ($\lambda_{max} = 358$ nm, $\epsilon_{max} = 1.8$ $\times 10^{4} \text{ M}^{-1} \text{ cm}^{-1}$)^{18,29} in MeCN or ($\lambda_{\text{max}} = 361 \text{ nm}, \epsilon_{\text{max}} = 1.7 \times 10^{4}$ $M^{-1} \text{ cm}^{-1}$; $\lambda_{max} = 460 \text{ nm}$, $\epsilon_{max} = 650 \text{ M}^{-1} \text{ cm}^{-1}$) in PhCN at 298 K. The kinetic measurements were carried out under pseudo-first-order conditions, where dioxygen concentrations were maintained at more than 10 times excess the concentrations of AcrHR.

Cyclic Voltammetry. Cyclic voltammetric measurements were performed at 298 K on a BAS 100 W electrochemical analyzer in deaerated PhCN containing 0.1 M tetra-n-butylammonium phosphate (TBAPF₆) as supporting electrolyte. A conventional three-electrode cell was used with a platinum working electrode (surface area of 0.3 mm²) and a platinum wire as the counter electrode. The Pt working electrode (BAS) was routinely polished with a BAS polishing alumina suspension and rinsed with acetone before use. The measured potentials were recorded with respect to the Ag/AgNO₃ (0.01 M) reference electrode. All potentials (vs Ag/Ag⁺) were converted to values vs SCE by adding 0.29 V.43

Results and Discussion

Catalytic Two-Electron vs Four-Electron Reduction of O₂ by AcrH₂. No reduction of O_2 by AcrH₂ occurs in PhCN at 298 K. In the absence of HClO₄, no catalytic oxidation of AcrH₂ by O₂ in the presence of Co(TPP)⁺ in MeCN is observed.^{18a} In the presence of a catalytic amount of Co(OEP) and more than stoichiometric amount of HClO₄, however, AcrH₂ is readily oxidized by O₂ to yield AcrH⁺ ($\lambda_{max} = 361$ nm) as shown in Figure 1, where Co(OEP) is oxidized to Co(OEP)⁺ ($\lambda_{max} = 420$ nm), the concentration of which remains the same during the reaction. To determine the stoichiometry of the reaction, the O_2 concentration is fixed at 1.7×10^{-3} M and the catalytic

⁽⁴³⁾ DeSimone, R. E.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 2343.

Figure 2. Plots of the concentration of AcrH⁺ formed in the oxidation of AcrH₂ (3.0×10^{-3} M) by O₂ (1.7×10^{-3} M), catalyzed by Co₂(DPA), Co₂(DPX), Co₂(DPB), Co₂(DPD) (1.0×10^{-5} M), and Co(OEP) (2.0×10^{-5} M) in PhCN, vs the ration of the concentration of AcrH₂ to the initial concentration of O₂ in the presence of HClO₄ (3.0×10^{-2} M).

reduction of O_2 is examined by changing the concentration of AcrH₂. The results of such spectral titration are shown in Figure 2 (\bigcirc), which indicates that AcrH₂ reacts with 1 equiv of O_2 to produce AcrH⁺ and H₂O₂ (eq 1). The stoichiometric formation

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

of H_2O_2 (1.6 × 10⁻³ M) was confirmed by the iodometric titration (see Experimental Section). Such catalytic two-electron reduction of O_2 by AcrH₂ has previously been reported for the Co(TPP)⁺-catalyzed reduction of O_2 by AcrH₂ in the presence of HClO₄ in MeCN.¹⁸

When Co(TPP)⁺ is replaced by a cofacial dicobalt porphyrin $[Co_2(DPA)]$, the concentration of AcrH⁺ formed in the Co₂-(DPA)-catalyzed reduction of O₂ by AcrH₂ becomes 2 times the O₂ concentration (1.7 × 10⁻³ M), as shown in Figure 2 (•). Thus, the four-electron reduction of O₂ by AcrH₂ occurs efficiently in the presence of a catalytic amount of Co₂(DPA) and HClO₄ (2.0 × 10⁻² M) in PhCN (eq 2). In this case, it was

$$2 \bigoplus_{\substack{N \\ Me}}^{H,H} + O_2 + 2H^+ \xrightarrow{Co_2(DPA)} 2 \bigoplus_{\substack{N \\ Me}}^{H} + 2H_2O \quad (2)$$

confirmed that no H_2O_2 was formed by iodometric titration in the catalytic reduction of O_2 by Acr H_2 .

The other cofacial dicobalt porphyrins also catalyze the fourelectron reduction of O_2 by AcrH₂. However, the concentration of AcrH⁺ formed in the catalytic reduction of O_2 by AcrH₂ in Figure 2 decreases following the sequence Co₂(DPX), Co₂-(DPB), and Co₂(DPD), indicating that the contribution of the two-electron-reduction pathway of O₂ increases in this order.

Catalytic Dehydration vs Oxygenation of AcrHR by O₂. The catalytic two-electron reduction of O₂ by 9-alkyl-10-methyl-9,10-dihydroacridines (AcrHR) also proceeds efficiently using Co(TPP)⁺ or Co(OEP) as a catalyst. The oxidized products of AcrHR were examined by ¹H NMR. The results are summarized in Table 1. In the case of R = H, Me, Et, and CH₂COOEt, the oxidized product in the Co(TPP)⁺-catalyzed reduction of AcrHR by O₂ in CD₃CN is solely AcrR⁺ and the reduced product of O_2 is H_2O_2 (Table 1). The smaller H_2O_2 yields than AcrR⁺ yields shown in Table 1 suggest that H₂O₂ decomposes partially during the Co(TPP)⁺-catalyzed reactions. The Co(OEP)catalyzed reduction of O₂ by AcrHR affords virtually the same products (Table 1). This indicates that the dehydration of AcrHR $(R = H, Me, Et, and CH_2COOEt)$ occurs exclusively via the C(9)-H bond cleavage (Scheme 2a). In contrast, the oxygenation of R occurs selectively in the case of $R = Bu^t$ and CMe_2 -COOMe to yield AcrH⁺ and ROOH via the C(9)-C bond cleavage (Table 1). Thus, the dehydration pathway via the C(9)-H bond cleavage of AcrHR (R = H, Me, Et, and CH₂-COOEt) in Scheme 2a is changed to the oxygenation pathway via the C(9)–C bond cleavage of AcrHR ($R = Bu^t$ and CMe₂-COOMe) in Scheme 2b. In the case of $R = CH_2Ph$, both the dehydration and the oxygenation pathway occur to yield AcrCH₂Ph⁺ and AcrH⁺ together with the oxygenated product, PhCHO, which may be formed via the decomposition of Ph₂-CHOOH.

The observed selectivities for the C(9)-H vs C(9)-C bond cleavage in Table 1 agree with those reported for the C(9)-H vs C(9)–C bond cleavage of radical cations of AcrHR (AcrHR $^{++}$) produced in the electron-transfer oxidation of AcrHR with Fe- $(phen)_3^{3+}$ (phen = 1,10-phenanthroline) depending on the type of R substituent (Scheme 3).²⁹ In the case of R = Me, Et, and CH₂COOEt, the C(9)-H bond of AcrHR^{$\bullet+$} is heterolytically cleaved to produce AcrR• and H⁺ exclusively.^{29,44} AcrR• is further oxidized by $Fe(phen)_3^{3+}$ to yield AcrR⁺. Such a deprotonation pathway is disfavored in the case of $R = Bu^{t}$ and CMe₂COOMe, when the C(9)–C bond of AcrHR^{$\bullet+$} is homolytically cleaved to produce AcrH⁺ and R[•] exclusively.^{29,45,46} In the case of CH₂Ph, both the C(9)-H and C(9)-C bonds are cleaved to yield AcrCH₂Ph⁺ and AcrH⁺.²⁹ Such agreement in the competition of C(9)-H vs C(9)-C bond cleavage indicates that the dehydrogenation vs oxygenation of AcrHR depending on R in the cobalt porphyrin-catalyzed reduction of O₂ by AcrHR (Scheme 2) is determined by the selectivities for C-H and C-C bond cleavages in the radical cation (AcrHR^{•+}), which may be produced by electron transfer from AcrHR to cobalt(III) porphyrins as discussed in more detail later.

When the monomeric cobalt porphyrin is replaced by a cofacial dicobalt porphyrin in the reduction of O_2 by AcrHBu^t, the yield of the two-electron-reduced product of O_2 , i.e., Bu^t-OOH, decreases in the order $Co_2(DPB)_2$, $Co_2(DPX)$, and Co_2 -(DPA), accompanied by the formation of the four-electron-reduced product of O_2 , Bu'OH, as shown in Table 1.⁴⁷ In the case of $Co_2(DPA)$, a significant amount of acetone is formed with methanol. Such a change in the stoichiometry from the

⁽⁴⁴⁾ Hapiot, P.; Moiroux, J.; Savéant, J.-M. J. Am. Chem. Soc. 1990, 112, 1337.
(45) (a) Anne, A.; Fraoua, S.; Moiroux, J.; Savéant, J.-M. J. Am. Chem. Soc.

^{1996, 118, 3938. (}b) Anne, A.; Fraoua, S.; Moiroux, J.; Savéant, J.-M. J. Phys. Org. Chem. 1998, 11, 774.
(46) For C-C bond cleavage of radical cations of other NADH analogues, see:

⁽a) Anne, A.; Moiroux, J.; Savéant, J.-M. J. Am. Chem. Soc. 1993, 115, 10224. (b) Takada, N.; Itoh, S.; Fukuzumi, S. Chem. Lett. 1996, 25, 1103. (c) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998, 120, 8060.
(47) In the presence of 1.0 × 10⁻⁴ M Co(OEP) as well as in the absence of

⁽⁴⁷⁾ In the presence of 1.0 × 10⁻⁴ M Co(OEP) as well as in the absence of Co(OEP) or Co₂(DPA), no decomposition of Bu'OOH (5 × 10⁻³ M) was observed in the presence of 5.0 × 10⁻² M HClO₄ in air-saturated CDCl₃ in 1.5 h. In the presence of 1.0 × 10⁻⁴ M Co₂(DPA), only 9% Bu'OH was formed by the catalytic decomposition of Bu'OOH (5 × 10⁻³ M) in the presence of 5.0 × 10⁻² M HClO₄ in air-saturated CDCl₃ in 1.5 h. Thus, the catalytic decomposition pathway of Bu'OOH is negligible in the results of Table 1.

Table 1. Monocobalt Porphyrin or Dicobalt Porphyrin-Catalyzed Reduction of O_2 by AcrHR (8.0×10^{-3} M) in the Presence of Cobalt Porphyrins (1.0×10^{-4} M) and HClO₄ (5.0×10^{-2} M) in O₂-Saturated CD₃CN and CDCl₃ at 298 K

catalyst	AcrHR	time, h	product (yield, %)	[Bu ^t OH]/[Bu ^t OOH]
Co(TPP) ⁺	R = H	1	AcrH ⁺ (100), H ₂ O ₂ (90)	
	Me	2	$AcrMe^+$ (100), H_2O_2 (61)	
	Et	2	$AcrEt^{+}$ (100), H_2O_2 (59)	
	CH ₂ COOEt	4	$AcrCH_2COOEt^+$ (100), H_2O_2 (53)	
	CH ₂ Ph	2	AcrCH ₂ Ph ⁺ (43), AcrH ⁺ (57), PhCHO (34)	
	CMe ₂ COOMe	1	AcrH ⁺ (100), HOOCMe ₂ COOMe (83), Me ₂ CO (8)	
	Bu ^t	1	AcrH ⁺ (100), Bu'OOH (99)	0
Co(OEP)	R = H	1	$AcrH^{+}$ (100), $H_{2}O_{2}$ (98)	
	Et	2	$AcrEt^{+}$ (100), H_2O_2 (85)	
	CMe ₂ COOMe	1	AcrH ⁺ (100), HOOCMe ₂ COOMe (48), Me ₂ CO (33)	
	Bu ^t	1.5	AcrH ⁺ (100), Bu'OOH (85)	0
Co ₂ (DPA)	$R = CMe_2COOMe$	1	AcrH ⁺ (100), HOOCMe ₂ COOMe (50), Me ₂ CO (40)	
	Bu ^t	1.5	AcrH ⁺ (100), Bu'OOH (31), Bu'OH (19), Me ₂ CO (47), MeOH (6), HCHO (2)	0.61
Co ₂ (DPX)	Bu ^t	1.5	AcrH ⁺ (100), Bu'OOH (67), Bu'OH (32), Me ₂ CO (1)	0.48
Co ₂ (DPB)	Bu ^t	1.5	AcrH ⁺ (100), Bu'OOH (73), Bu'OH (26), Me ₂ CO (1)	0.36

Scheme 2

Scheme 3

A

AcrHR
$$\xrightarrow{k_d}$$
 AcrHR⁺⁺ $\xrightarrow{k_d}$ AcrH⁺ + R⁺

two-electron reduction of O_2 in the case of Co(OEP) to the fourelectron reduction of O_2 in the case of cofacial dicobalt porphyrins is shown in Figure 3. The contribution of the fourelectron-reduction pathway increases in the order Co₂(DPB), Co₂(DPX), and Co₂(DPA), in agreement with the order in the case of the catalytic reduction of O_2 by AcrH₂ (Figure 2).

Kinetic Comparison of Catalytic Reactivity in Oxidation of AcrHR by O_2 with Reactivity of AcrHR⁺⁺. Rates of the catalytic oxidation of AcrHR with an excess amount of O_2 and HClO₄ in the presence of a catalytic amount of Co(TPP)⁺ obey pseudo-first-order kinetics. The observed pseudo-first-order rate constant (k_{obs} , s⁻¹) increases linearly with an increase in the Co(TPP)⁺ concentration as shown in Figure 4, which confirms that Co(TPP)⁺ acts as an efficient catalyst in the oxidation of AcrHR by O_2 in the presence of HClO₄ in MeCN. The rate of the oxidation of AcrHR by O_2 in the presence of HClO₄ without Co(TPP)⁺ is negligible as compared with the rates in the presence of Co(TPP)⁺ (Figure 4). Thus, the rate of formation of AcrR⁺ is given by eq 3

$$d[AcrR^{+}]/dt = k_{cat}[AcrHR][Co(TPP)^{+}]$$
(3)

where k_{cat} is the second-order rate constant for the Co(TPP)⁺catalyzed oxidation of AcrHR by O₂. When Co(II)(TPP) was used as the catalyst instead of Co(III)(TPP)⁺, the same k_{cat} value was obtained for the Co(TPP)-catalyzed oxidation of AcrH₂ by O₂. This indicates that Co(II)(TPP) is immediately converted

Figure 3. Plots of the concentration of AcrH⁺ formed in the oxidation of AcrHBu^{*i*} (3.0 × 10⁻³ M) by O₂ (1.7 × 10⁻³ M), catalyzed by Co₂(DPA), Co₂(DPX), Co₂(DPB), Co₂(DPD) (1.0 × 10⁻⁵ M), and Co(OEP) (2.0 × 10⁻⁵ M) in PhCN, vs the ration of the concentration of AcrHR to the initial concentration of O₂ in the presence of HClO₄ (3.0 × 10⁻² M).

Figure 4. Plots of k_{obs} vs [Co(TPP)⁺] for the Co(TPP)⁺-catalyzed reduction of O₂ (2.6 × 10⁻³ M) by AcrHR (1.0 × 10⁻⁴ M) in the presence of HClO₄ (2.0 × 10⁻³ M) in MeCN at 298 K; R = CMe₂COOMe (\blacktriangle), Bu^{*t*} (\blacktriangledown) H (\bigcirc), Me (\bigcirc), Et (\square), CH₂COOEt (\triangle), and AcrD₂ (\blacksquare).

to Co(III)(TPP)⁺, the concentration of which remains the same during the catalytic oxidation of AcrHR with O₂ as indicated in Figure 1 in the case of AcrH₂. The same kinetic formation (eq 3) is applied to the oxidation of AcrHR by O₂ catalyzed by Co(OEP) and Co₂(DPA). The k_{obs} values of the cobalt porphyrin catalyzed oxidation of AcrH₂ by O₂ are rather independent of

Figure 5. (a) Plot of k_{obs} vs $[O_2]$ for the oxidation of AcrH₂ $(1.0 \times 10^{-4} \text{ M})$ with O₂ catalyzed by Co(OEP) $(1.1 \times 10^{-5} \text{ M})$ in the presence of HClO₄ $(5.0 \times 10^{-2} \text{ M})$ in PhCN at 298 K. (b) Plots of k_{obs} vs [HClO₄] for the oxidation of AcrH₂ $(1.0 \times 10^{-4} \text{ M})$ and AcrD₂ $(1.0 \times 10^{-4} \text{ M})$ with O₂ $(8.5 \times 10^{-3} \text{ M})$, catalyzed by Co(OEP) $(4.0 \times 10^{-5} \text{ M})$ in PhCN at 298 K.

Table 2. Rate Constants (k_{cat}) of Cobalt Porphyrin-Catalyzed Reduction of O₂ by AcrHR in the Presence of HClO₄ in MeCN and PhCN and Decay Rate Constants (k_d) of AcrHR⁺⁺ Formed by the One-Electron Oxidation with Fe³⁺ in MeCN at 298 K

AcrHR	Co(TPP)+ a	Co(OEP) ^b	Co ₂ (DPA) ^b	$k_{\rm d},^c { m s}^{-1}$
AcrH ₂	4.2	7.1	740	6.4
AcrD ₂	0.59	1.8	180	0.71
R = Me	1.6			1.1
R = Et	1.0	2.4		0.49
$R = CH_2COOEt$	0.23			0.37
$R = CMe_2COOMe$	55	97	5000	72
$R = Bu^t$	15	27	4600	14

^{*a*} [HClO₄] = 2.0×10^{-2} M; [O₂] = 2.6×10^{-3} M in MeCN. ^{*b*} [HClO₄] = 5.0×10^{-2} M; [O₂] = 8.5×10^{-3} M in PhCN. ^{*c*} Taken from ref 29.

concentrations of O₂ and HClO₄ as shown in parts a and b, respectively, of Figure 5. This indicates that the steps affected by O₂ and HClO₄ in the catalytic cycle of O₂ reduction are not involved in the catalytic rate-determining step. When AcrH₂ is replaced by the dideuterated compound (AcrD₂), a significant kinetic deuterium isotope effect ($k_H/k_D = 4.0$) is observed (Figure 5b) in Co(OEP). This indicates that the C(9)–H bond cleavage (deprotonation from AcrH₂*+) is involved in the catalytic rate-determining step for the reduction of O₂ by AcrH₂. The k_{cat} values of the oxidation of various AcrHR's by O₂, catalyzed by Co(TPP)+, Co(OEP), and Co₂(DPA) at the fixed concentrations of O₂ and HClO₄, are listed in Table 2.

We have previously reported the decay rate constants (k_d) of AcrHR^{•+} with various alkyl substituents, formed by the oneelectron oxidation of Fe(phen)₃³⁺ in MeCN, which were determined directly by monitoring the decay of the transient absorption due to AcrHR^{•+} using a stopped-flow spectrophotometer.²⁹ The k_d values of AcrHR^{•+} are also listed in Table 2, indicating that the reactivity of the C(9)–H or C(9)–C bond

Figure 6. Plots of log k_{cat} for the cobalt porphyrin-catalyzed oxidation of AcrHR or AcrD₂ by O₂ vs log k_d for the deprotonation of AcrHR⁺⁺ or AcrD₂⁺⁺ in MeCN and PhCN; Co₂(DPA) (\bullet), Co(OEP) (\bigcirc), and Co(TPP)⁺ (\blacksquare).

cleavage of AcrHR^{•+} varies significantly depending on the type of R in parallel with the variation of the k_{cat} values.²⁹

The log k_{cat} values are compared with the log k_d values in Figure 6, where a good linear correlation between them is obtained for each catalyst. In addition, the slope of the linear correlation is virtually the same irrespective of different catalysts $Co(TPP)^+$, Co(OEP), and $Co_2(DPA)$. Such a linear correlation with the same slope irrespective of different catalysts indicates that the C(9)-H and/or C(9)-C bond cleavage of AcrHR^{$\bullet+$} is involved in the rate-determining step in each catalytic oxidation of AcrHR by O₂. AcrHR^{•+} may be produced by electron transfer from AcrHR to cobalt(III) porphyrins. Since the one-electronoxidation potential of AcrHR (e.g., 0.81 V vs SCE for AcrH₂)²⁹ is higher than the one-electron-reduction potential of Co(TPP)⁺ (0.37 V vs SCE),¹⁸ the electron transfer from AcrHR to Co-(TPP)⁺ is endergonic.⁴⁸ In such a case, the oxidation of AcrHR by Co(TPP)⁺ proceeds via the slow electron transfer from AcrHR to Co(TPP)⁺, followed by the C(9)–H and/or C(9)–C bond cleavage in competition with the back electron transfer from Co(TPP) to AcrHR+.15 Since the one-electron-oxidation potential of AcrHR is rather constant irrespective of the type of R,^{29,49} the difference in the oxidation reactivity of AcrHR is mainly determined by the rate of the C(9)-H and/or C(9)-C bond cleavage (k_d) . This may be the reason there is a good linear correlation between log k_{cat} and log k_{d} in Figure 6.

Catalytic Mechanism of Four-Electron Reduction of O_2 by AcrHR. When the catalytic rate-determining step is the slow electron transfer from AcrHR to cobalt(III) porphyrins, followed by the C(9)–H and/or C(9)–C bond cleavage in competition with the back electron transfer from cobalt(II) porphyrins to AcrHR^{•+}, the kinetic analysis provides no information about the subsequent catalytic cycle. However, we have previously proposed the mechanism of four-electron reduction of O_2 by ferrocene derivatives in which the catalytic rate-determining step is changed depending on the electron-donor ability of ferrocene derivatives.²⁰ Virtually the same mechanism may be applied for the catalytic four-electron reduction of O_2 by AcrH₂ via the

⁽⁴⁸⁾ Electron transfer from a series of AcrHR's to all the cobalt porphyrins employed in this study is endergonic judging from their one-electron redox potentials; see refs 16 and 22.

⁽⁴⁹⁾ Anne, A.; Fraoua, S.; Hapiot, P.; Moiroux, J.; Savéant, J.-M. J. Am. Chem. Soc. 1995, 117, 7412.

C(9)-H bond cleavage, as shown in Scheme 4. It has been shown that the initial electron reduction of the Co(III)₂ complex by ferrocene derivatives gives the Co(III)Co(II) complex.²⁰ In the case of AcrH₂, the initial slow electron transfer from AcrH₂ to the $Co(III)_2$ complex is followed by the C(9)-H and/or C(9)-C bond cleavage in competition with the back electron transfer from the Co(III)Co(II) complex to AcrH₂^{•+} to produce AcrH[•]. Since the catalytic rate-determining step is deprotonation of $AcrH_2^{\bullet+}$ rather than the steps affected by O₂ and HClO₄ (vide supra), the Co(III)Co(II) complex may react rapidly with O_2 and H⁺ to give the Co(III)Co(III)O₂H complex, followed by electron transfer from AcrH[•] to the Co(III)Co(III)O₂H complex to produce AcrH⁺ and the Co(II)Co(III)O₂H complex. After deprotonation, the µ-peroxo Co(III)-O2-Co(III) complex is formed as the case of the catalytic four-electron reduction of O₂ by ferrocene derivatives.²⁰ The heterolytic O-O bond cleavage of the Co(III)-O₂-Co(III) complex affords the highvalent Co(IV) oxo porphyrin π -radical cation which is reduced by AcrH₂ in the presence of proton to yield H₂O, accompanied by formation of AcrH⁺ (Scheme 4). When a strong electron donor such as decamethylferrocene ($Fe(C_5Me_5)_2$) is employed as an electron source in the catalytic four-electron reduction of O₂, the catalytic rate-determining step changes from the electrontransfer step to the O-O bond cleavage of the Co(III)-O₂-Co(III) complex which becomes independent of concentration of Fe(C₅Me₅)₂, thus affording the zero-order kinetics with respect to formation of Fe(C₅Me₅)₂.²⁰ In the case of AcrH₂, which is a weaker electron donor than ferrocene, the catalytic rate-determining step is the initial electron transfer followed by the deprotonation of AcrH2^{•+}, affording first-order kinetics with respect to the formation of AcrH⁺ (vide supra).

The critical point to distinguish between the two-electron and four-electron-reduction pathways is formation of the μ -peroxo Co(III)-O₂-Co(III) complex, which requires an appropriate Co-Co distance in the cofacial dicobalt complex. The Co-Co distance in Co₂(DPB) (3.73 Å)^{34a} may be too short whereas the separation in Co₂(DPD)(2MeOH) (8.62 Å)⁵⁰ is too long to

accommodate O₂ between two cobalt atoms. On the other hand, the Co–Co distance in Co₂(DPA) (4.53 Å)⁵¹ and that in Co₂-(DPX) (4.58 Å)⁵⁰ may be suitable for formation of the μ -peroxo Co(III)–O₂–Co(III) complex, resulting in the catalytic fourelectron reduction of O₂ by AcrH₂.⁵² In the case of monomeric cobalt porphyrins such as Co(TPP)⁺ and Co(OEP), there is no way to form the μ -peroxo Co(III)–O₂–Co(III) complex. In such a case, the protonation of the Co(III)O₂H complex yields H₂O₂, resulting in only two-electron reduction of O₂ by AcrH₂.

In the case of AcrHBu^t, the mechanism of the catalytic fourelectron reduction of O2, accompanied by the oxygenation of Bu^t, is modified as shown in Scheme 5. The initial electron transfer from AcrHBut to the Co(III)₂ complex results in the homolytic C(9)-C bond cleavage to produce Bu' and AcrH+ (vide supra). Since the homolytic C(9)-C bond cleavage is also the catalytic rate-determining step (vide supra), the Co(III)Co-(III) O_2H complex is formed by the reaction of O_2 and H^+ , followed by electron transfer from $Bu^{\prime \bullet}$ ($E^0_{ox} = 0.09 V vs SCE$)⁵³ to the Co(III)Co(III)O₂H complex to produce Bu^{t+} and the Co-(II)Co(III)O₂H complex. The subsequent step may be the same as the case of the four-electron reduction of O₂ by AcrH₂ in Scheme 4. The high-valent Co(IV) oxo porphyrin π -radical cation, which is produced by the heterolytic O-O bond cleavage of the Co(III) $-O_2-Co(III)$ complex, is reduced by AcrHBu^t in the presence of proton to yield Bu'OH, accompanied by formation of AcrH⁺ (Scheme 5). However, Bu^t• produced in the initial electron transfer from $AcrHBu^{t}$ to the $Co(III)_{2}$ complex is known to be readily trapped by O_2 to give the peroxyl radical Bu'OO^{•.54} Such alkylperoxyl radicals (ROO[•])

^{(50) (}a) Chang, C. J.; Deng, Y.; Shi, C.; Chang, C. K.; Anson, F. C.; Nocera, D. G. *Chem. Commun.* **2000**, 1355. (b) Chang, C. J.; Baker, E. A.; Pistorio, B. J.; Deng, Y.; Loh, Z.-H.; Miller, S. E.; Carpenter, S. D.; Nocera, D. G. *Inorg. Chem.* **2002**, *41*, 3102.

⁽⁵¹⁾ Bolze, F.; Gros, C. P.; Drouin, M.; Espinosa, E.; Harvey, P. D.; Guilard, R. J. Organomet. Chem. 2002, 643–644, 89.

⁽⁵²⁾ Co₂(DPX) acts as the most selective catalyst for the four-electron reduction of O₂ by ferrocene derivatives,²⁰ whereas Co₂(DPA) is the most selective for the four-electron reduction of O₂ by AcrHR. This difference depending on the type of reductants, i.e., one-electron reductants (ferrocene derivatives) vs two-electron reductants (AcrHR) may result from the contribution of the direct reaction of AcrH^{*} with O₂ and H⁺ in the catalytic cycle.¹² Such a reaction can compete with electron transfer from AcrH^{*} to the Co(III)-Co(III)O₂H complex, which may be faster in the case of Co₂(DPA) than the case of Co₂(DPA) because of the more positive reduction potential of Co(III)₂(DPX) (0.53 V vs SCE) than Co(III)₂(DPA) (0.43 V vs SCE). This may lead to the more selective four-electron reduction of O₂ by AcrH₂ in the case of Co₂(DPA) as compared with the case of Co₂(DPX). However, the difference in the catalytic selectivity for four- vs two-electron reduction of O₂ depending on the type of reductants has yet to be fully clarified.

⁽⁵³⁾ Wayner, D. D. M.; McPhee, D. J.; Griller, D. J. Am. Chem. Soc. 1988, 110, 132.

are regarded as rather strong one-electron oxidants judging from the highly positive one-electron-reduction potentials.^{55,56} There have been reports on electron-transfer reactions from a variety of electron donors to alkylperoxyl radicals.^{56–58} Thus, the initial electron transfer from AcrHBu^{*t*} to the Co(III)₂ complex may also be followed by the subsequent electron transfer from the Co(III)Co(II) complex to Bu'OO• to produce Bu'OOH after protonation, accompanied by regeneration of the Co(III)₂ complex (Scheme 5). This may be the reason the two-electronreduction pathway to yield Bu'OOH is competing even in the case of the cofacial dicobalt porphyrin catalyzed reduction of O₂ by AcrHBu^{*t*} (Table 1), in contrast with the case of AcrH₂ which undergoes clean four-electron reduction of O_2 . In the case of monomeric cobalt porphyrins, the reaction of the Co(III)- O_2H complex with Bu^{t+} yields Bu'OOH (Scheme 5), resulting in only the two-electron reduction of O_2 by AcrHBu^t.

In conclusion, the four-electron reduction of O₂ by AcrHR catalyzed by cofacial dicobalt porphyrins occurs efficiently via the electron transfer from AcrHR to cofacial dicobalt porphyrins, followed by the C(9)–H and/or C(9)–C bond cleavage of AcrHR^{•+}, depending on the type of R, as the catalytic rate-determining step, leading to the dehydration and oxygenation of AcrHR, respectively. In each case, the formation of the μ -peroxo Co(III)–O₂–Co(III) complex, which requires an appropriate Co–Co distance in the cofacial dicobalt complex, is essential for the four-electron reduction of O₂ by AcrHR.

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research (No. 16205020) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a Grant from the French Ministry of Research and CNRS (UMR 5633).

JA046422G

⁽⁵⁴⁾ Bu'OO' has been detected by ESR in the electron-transfer oxidation of a Bu'-substituted NADH analogue in the presence of O₂; see ref 46b.
(55) (a) Jonsson, M. J. Phys. Chem. **1996**, 100, 6814. (b) Merényi, G.; Lind, J.;

^{(55) (}a) Jonsson, M. J. Phys. Chem. 1996, 100, 6814. (b) Merényi, G.; Lind, J.; Engman, L. J. Chem. Soc., Perkin Trans 2 1994, 2551.
(56) Fukuzumi, S.; Shimoosako, K.; Suenobu, T.; Watanabe, Y. J. Am. Chem.

Soc. 2003, 125, 9074.
 (57) (a) Alfassi, Z. B.; Mosseri, S.; Neta, P. J. Phys. Chem. 1989, 93, 1380. (b) Khaikin, G. I.; Alfassi, Z. B.; Neta, P. J. Phys. Chem. 1995, 99, 16722. (c) Khaikin, G. I.; Alfassi, Z. B.; Huie, R. E.; Neta, P. J. Phys. Chem. 1996,

^{100, 7072. (}d) Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1990, 19, 413.
(58) Workentin, M. S.; Maran, F.; Wayner, D. D. M. J. Am. Chem. Soc. 1995,

⁽⁵⁸⁾ Workentin, M. S.; Maran, F.; Wayner, D. D. M. J. Am. Chem. Soc. 1995, 117, 2120.